skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Imola, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider k-means clustering in an online setting where each new data point is assigned to its closest cluster center and incurs a loss equal to the squared distance to that center, after which the algorithm is allowed to update its centers. The goal over a data stream X is to achieve a total loss that is not too much larger than L(X, OPT), the best possible loss using k fixed centers in hindsight. We give the first algorithm to achieve polynomial space and time complexity in the online setting. 
    more » « less
  2. We consider k-means clustering in an online setting where each new data point is assigned to its closest cluster center and incurs a loss equal to the squared distance to that center, after which the algorithm is allowed to update its centers. The goal over a data stream X is to achieve a total loss that is not too much larger than the best possible loss using k fixed centers in hindsight. Ours is the first algorithm to achieve polynomial space and time complexity in the online setting. We note that our results have implications to the related streaming setting, where one final clustering is outputted, and the no-substitution setting, where center selections are permanent. We show a general reduction between the no-substitution cost of a blackbox algorithm and its online cost. Finally, we translate our algorithm to the no-substitution setting and streaming settings, and it competes with and can outperform existing work in the areas. 
    more » « less